Yiyeceklerin Pişme Süreçlerinin Yapay Görme ile Karakterizasyonu

Hülya Yalçin*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Advances in computing technology to improve the automation of industrial production processes has grown the expectations for food products of high quality and safety standards. Computer vision and machine learning techniques provide an alternative for developing automated and cost-effective methods to accomplish the requirements in food industry. In this paper, we propose several computer vision algorithms to characterize the process of transformation of bakery goods during production. Features are extracted from images acquired from a camera mounted in the furnace of a manufacturing company that produces bakery foods. Radial Basis Function Neural Network (RBFNN) is used to model the transformation of appearance of a particular product of interest. The RBF Neural Network offers several advantages compared to other neural network architectures especially when a characterization of a transitional process is needed. RBFNN possesses the property of best approximation and the output of the network can be optimized by setting suitable values of the center and the spread of RBF. Experimental results indicate that gradient based features have higher recognition rate due to their ability to capture the texture.

Tercüme edilen katkı başlığıComputer vision based characterization of production phases for pastry goods
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar921-924
Sayfa sayısı4
ISBN (Elektronik)9781509016792
DOI'lar
Yayın durumuYayınlandı - 20 Haz 2016
Etkinlik24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey
Süre: 16 May 201619 May 2016

Yayın serisi

Adı2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???24th Signal Processing and Communication Application Conference, SIU 2016
Ülke/BölgeTurkey
ŞehirZonguldak
Periyot16/05/1619/05/16

Bibliyografik not

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Computer vision
  • inspection automation in food production
  • radial basis function neural network

Parmak izi

Yiyeceklerin Pişme Süreçlerinin Yapay Görme ile Karakterizasyonu' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap