Yitim fonksiyonlarinin anlamsal bölütlemede alan uyarlamasina etkisi

Kirman Serdar, Hilmi Guven, Cihan Topal

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

In this paper, it is analyzed how different loss functions affect the performance of domain adaptation in the field of semantic segmentation. Semantic segmentation is a pixel-wise classification problem of an image. Large amounts of annotated data are required to train successfully in multi-parameter deep learning architectures. In recent years, several works have demonstrated that synthetic datasets are a good alternative since they are automatically annotated in virtual environments. However, due to the different distribution of source and target datasets, there is a decrease in performance. Domain adaptation methods address this problem by decreasing gap between source and target data. In this study, it is investigated that the effect of Cross- Entropy, Lovasz-Softmax, Dice Coefficient, Tversky and mean Intersection-over-Union Loss functions on domain adaptation in semantic segmentation. For our study, KITTI and Virtual KITTI datasets are used for real and synthetic images respectively. By evaluating the quantitative results, it is observed that the Dice Coefficient is relatively more successful.

Tercüme edilen katkı başlığıEffect of loss functions on domain adaptation in semantic segmentation
Orijinal dilTürkçe
Ana bilgisayar yayını başlığıSIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781665436496
DOI'lar
Yayın durumuYayınlandı - 9 Haz 2021
Harici olarak yayınlandıEvet
Etkinlik29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 - Virtual, Istanbul, Turkey
Süre: 9 Haz 202111 Haz 2021

Yayın serisi

AdıSIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021
Ülke/BölgeTurkey
ŞehirVirtual, Istanbul
Periyot9/06/2111/06/21

Bibliyografik not

Publisher Copyright:
© 2021 IEEE.

Keywords

  • Computer vision
  • Deep learning
  • Domain adaptation
  • Loss functions
  • Semantic segmentation

Parmak izi

Yitim fonksiyonlarinin anlamsal bölütlemede alan uyarlamasina etkisi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap