Özet
Texture recognition is an important tool used for content-based image retrieval, face recognition, and satellite image classification applications. One of the most successful features for texture recognition is local binary patterns (LBP), which computes local intensity differences for a pixel with respect to its neighbor pixels. In many studies in the literature, histogram based similarity measures are employed to classify LBP features. In this study, we investigate the performance of support vector machines, linear discriminant analysis, and linear regression classifier to improve the success of LBP features. We achieved 84.4% classification success using linear regression classification.
Tercüme edilen katkı başlığı | A comparison of classification methods for local binary patterns |
---|---|
Orijinal dil | Türkçe |
Ana bilgisayar yayını başlığı | 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 805-808 |
Sayfa sayısı | 4 |
ISBN (Elektronik) | 9781509016792 |
DOI'lar | |
Yayın durumu | Yayınlandı - 20 Haz 2016 |
Harici olarak yayınlandı | Evet |
Etkinlik | 24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey Süre: 16 May 2016 → 19 May 2016 |
Yayın serisi
Adı | 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 24th Signal Processing and Communication Application Conference, SIU 2016 |
---|---|
Ülke/Bölge | Turkey |
Şehir | Zonguldak |
Periyot | 16/05/16 → 19/05/16 |
Bibliyografik not
Publisher Copyright:© 2016 IEEE.
Keywords
- classification methods
- local binary patterns
- texture classification
- UIUC texture database