Wigner functions for the Landau problem in noncommutative spaces

Ömer F. Dayi*, Lara T. Kelleyane

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

60 Atıf (Scopus)

Özet

An electron moving on plane in a uniform magnetic field orthogonal to the plane is known as the Landau problem. Wigner functions for the Landau problem when the plane is noncommutative are found employing solutions of the Schrödinger equation as well as solving the ordinary *-genvalue equation in terms of an effective Hamiltonian. Then, we let momenta and coordinates of the phase space be noncommutative and introduce a generalized *-genvalue equation. We solve this equation to find the related Wigner functions and show that under an appropriate choice of noncommutativity relations they are independent of noncommutativity parameter.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1937-1944
Sayfa sayısı8
DergiModern Physics Letters A
Hacim17
Basın numarası29
DOI'lar
Yayın durumuYayınlandı - 21 Eyl 2002

Parmak izi

Wigner functions for the Landau problem in noncommutative spaces' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap