Vision-based uav guidance for autonomous landing with deep neural networks

Yunus Bicer, Majid Moghadam, M. Cagatay Sahin, Batuhan Eroglu, N. Kemal Ure

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

22 Atıf (Scopus)

Özet

Landing is one of the most critical phases of the flight during the operation of Unmanned Aerial Vehicles (UAVs). Even though flight control systems could perform automatic landing in nominal conditions, sensor failures in this phase might result in catastrophic crashes. In this study, we have trained an end-to-end Deep Learning (DL) model using the raw image inputs to estimate the relative heading angle of the aircraft with respect to the runway of the airport, when the connection with the corresponding sensor (beacon) is broken. To this end, we have used a closed-loop position trajectory following guidance and control system in order to train the network. The prediction performance of the network is shown for a number of unseen landing scenarios. Afterward, the estimated heading angle is fed into the guidance block in order to perform the autonomous landing using the angles predicted with the network. The main contribution of our work is to use an end-to-end architecture of the DL agent to estimate the observed state using raw image inputs, which increases the robustness with respect to sensor failures.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıAIAA Scitech 2019 Forum
YayınlayanAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Basılı)9781624105784
DOI'lar
Yayın durumuYayınlandı - 2019
EtkinlikAIAA Scitech Forum, 2019 - San Diego, United States
Süre: 7 Oca 201911 Oca 2019

Yayın serisi

AdıAIAA Scitech 2019 Forum

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???AIAA Scitech Forum, 2019
Ülke/BölgeUnited States
ŞehirSan Diego
Periyot7/01/1911/01/19

Bibliyografik not

Publisher Copyright:
� 2019 by German Aerospace Center (DLR). Published by the American Institute of Aeronautics and Astronautics, Inc.

Parmak izi

Vision-based uav guidance for autonomous landing with deep neural networks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap