Video based wildfire detection at night

Osman Günay*, Kasim Taşdemir, B. Uǧur Töreyin, A. Enis Çetin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

51 Atıf (Scopus)

Özet

There has been an increasing interest in the study of video based fire detection algorithms as video based surveillance systems become widely available for indoor and outdoor monitoring applications. A novel method explicitly developed for video based detection of wildfires at night (in the dark) is presented in this paper. The method comprises four sub-algorithms: (i) slow moving video object detection, (ii) bright region detection, (iii) detection of objects exhibiting periodic motion, and (iv) a sub-algorithm interpreting the motion of moving regions in video. Each of these sub-algorithms characterizes an aspect of fire captured at night by a visible range PTZ camera. Individual decisions of the sub-algorithms are combined together using a least-mean-square (LMS) based decision fusion approach, and fire/nofire decision is reached by an active learning method.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)860-868
Sayfa sayısı9
DergiFire Safety Journal
Hacim44
Basın numarası6
DOI'lar
Yayın durumuYayınlandı - Ağu 2009
Harici olarak yayınlandıEvet

Finansman

This work was supported in part by the Scientific and Technical Research Council of Turkey, TUBITAK, with Grant nos. 106G126 and 105E191, and in part by European Commission 6th Framework Program with Grant no. FP6-507752 (MUSCLE Network of Excellence Project).

FinansörlerFinansör numarası
European Commission 6th Framework ProgramFP6-507752
TUBITAK106G126, 105E191
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

    Parmak izi

    Video based wildfire detection at night' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap