Variable optimisation of medical image data by the learning Bayesian network reasoning

A. B. Orun, N. Aydin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

6 Atıf (Scopus)

Özet

The method proposed here uses Bayesian non-linear classifier to select optimal subset of attributes to avoid redundant variables and reduce data uncertainty in the classification process often used in medical diagnosis. The method also exploits the structural reasoning ability of Bayesian Networks (BN) to optimize large number of attributes to prevent overfitting, meanwhile it maintains the high classification accuracy. This process simplifies the complex data analyses and may lead to a cost reduction in clinical data acquisition process.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Sayfalar4554-4557
Sayfa sayısı4
DOI'lar
Yayın durumuYayınlandı - 2010
Harici olarak yayınlandıEvet
Etkinlik2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Süre: 31 Ağu 20104 Eyl 2010

Yayın serisi

Adı2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Ülke/BölgeArgentina
ŞehirBuenos Aires
Periyot31/08/104/09/10

Parmak izi

Variable optimisation of medical image data by the learning Bayesian network reasoning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap