Validation of an ANN Flow Prediction Model Using a Multistation Cluster Analysis

Mehmet C. Demirel*, Martijn J. Booij, Ercan Kahya

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

13 Atıf (Scopus)

Özet

The objective of this study is to validate a flow prediction model for a hydrometric station using a multistation criterion in addition to standard single-station performance criteria. In this contribution we used cluster analysis to identify the regional flow height, i.e., water-level patterns and validate the output of an artificial neural network (ANN) model of the Alportel River in Portugal. Measurements of precipitation, temperature, and flow height were used as input variables to the ANN model with a lead time of 12 h. The lead time of 12 h is assumed to be appropriate for a short-term hydrological prediction since it is meaningful for physical processes. The ANN model with three inputs, four hidden neurons, and ten epochs was tested using the new model-validation criterion. The high performance of the model (i.e., Nash-Sutcliffe coefficient is equal to 0.922) was confirmed by the cluster-analysis criterion. It can be concluded that a multistation-based approach can be used as an additional validation criterion and might result in a rejection of a model which initially passed a single-station validation criterion.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)262-271
Sayfa sayısı10
DergiJournal of Hydrologic Engineering - ASCE
Hacim17
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - 7 Mar 2012

Parmak izi

Validation of an ANN Flow Prediction Model Using a Multistation Cluster Analysis' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap