Uzaktan Algilama Görüntülerinin Siniflandirilmasinda Ikiz-Destek Vektör Makinelerinin Kapsamli Analizi

G. Taşkin*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

Recently, a supervised classifier called twin support vector machines (twin-SVM) has been introduced, and it has been compared to classical support vector machines (SVM) on UCI dataset in terms of classification performance. As a result of the studies, it has been stated that twin support vector machines provide higher classification performance compared to SVM. The main advantage of using twin-SVM is its lower computational complexity than classical SVM. In the context of this work, twin-SVM will be firstly applied to remote sensing image classification, and its performance will be analyzed in detail in comparison to SVM. The performance of the method will be evaluated with some criteria such as the sensitivity analysis of model selection, effects of number of training samples to the classification performance, analysis of nonlinear twin-SVM methods with different type of kernels and effects of feature selection to the performance. All the analysis will be conducted with some benchmark dataset frequently used in the remote sensing literature.

Tercüme edilen katkı başlığıA comprehensive analysis of twin support vector machines in remote sensing image classification
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar2427-2429
Sayfa sayısı3
ISBN (Elektronik)9781467373869
DOI'lar
Yayın durumuYayınlandı - 19 Haz 2015
Etkinlik2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Malatya, Turkey
Süre: 16 May 201519 May 2015

Yayın serisi

Adı2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2015 23rd Signal Processing and Communications Applications Conference, SIU 2015
Ülke/BölgeTurkey
ŞehirMalatya
Periyot16/05/1519/05/15

Bibliyografik not

Publisher Copyright:
© 2015 IEEE.

Keywords

  • remote sensing image classification
  • Twin support vector machines

Parmak izi

Uzaktan Algilama Görüntülerinin Siniflandirilmasinda Ikiz-Destek Vektör Makinelerinin Kapsamli Analizi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap