Uygim Maliyetli Aktif Ogrenme Yöntemi Kullanarak Nesne Etiketleme

Nuh Hatipoglu, Esra Çinar, Hazim Kemal Ekenel

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Deep learning models require large amount of training data to reach high accuracies. However, labeling large volumes of training data is a labor-intensive and time-consuming process. Active learning is an approach that seeks to maximize the performance of a model with the least possible amount of labeled data. It is of great practical importance to develop a framework by combining deep learning and active learning methods that transfer features from a small number of unlabeled training data to classifiers. With this study, we combine active learning and deep learning models, which allows for fine-tuning deep learning models with a small number of training data. We use images of shelf products belonging to the same product group with 13 classes and examine them using different deep learning classifier models. Experimental results show that we are able to achieve higher performance by annotating and using a part of the data for training compared to annotating and using the entire dataset. This way, we save from the annotations costs, and at the same time reach an improved object classification system.

Tercüme edilen katkı başlığıObject Annotation Using Cost-Effective Active Learning
Orijinal dilTürkçe
Ana bilgisayar yayını başlığıProceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar537-541
Sayfa sayısı5
ISBN (Elektronik)9781665429085
DOI'lar
Yayın durumuYayınlandı - 2021
Etkinlik6th International Conference on Computer Science and Engineering, UBMK 2021 - Ankara, Turkey
Süre: 15 Eyl 202117 Eyl 2021

Yayın serisi

AdıProceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???6th International Conference on Computer Science and Engineering, UBMK 2021
Ülke/BölgeTurkey
ŞehirAnkara
Periyot15/09/2117/09/21

Bibliyografik not

Publisher Copyright:
© 2021 IEEE

Keywords

  • Active learning
  • Classifíca-tion
  • Cost-effective active learning
  • Deep learning
  • Labeling

Parmak izi

Uygim Maliyetli Aktif Ogrenme Yöntemi Kullanarak Nesne Etiketleme' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap