Unsupervised classification of SAR images using normalized gamma process mixtures

Koray Kayabol*, Bilge Gunsel

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

6 Atıf (Scopus)

Özet

We propose an image prior for the model-based nonparametric classification of synthetic aperture radar (SAR) images that allows working with infinite number of mixture components. In order to enclose the spatial interactions of the pixel labels, the prior is derived by incorporating a conditional multinomial auto-logistic random field into the Normalized Gamma Process prior. In this way, we obtain an image classification prior that is free from the limitation on the number of classes and includes the smoothing constraint into classification problem. In this model, we introduced a hyper-parameter that can control the preservation of the important classes and the extinction of the weak ones. The recall rates reported on the synthetic and the real TerraSAR-X images show that the proposed model is capable of accurately classifying the pixels. Unlike the existing methods, it applies a simple iterative update scheme without performing a hierarchical clustering strategy. We demonstrate that the estimation accuracy of the proposed method in number of classes outperforms the conventional finite mixture models.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1344-1352
Sayfa sayısı9
DergiDigital Signal Processing: A Review Journal
Hacim23
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - Eyl 2013

Parmak izi

Unsupervised classification of SAR images using normalized gamma process mixtures' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap