UNSUPERVISED CHANGE DETECTION in OPTICAL SATELLITE IMAGERY USING SIFT FLOW

B. Awad, I. Erer

Araştırma sonucu: Dergiye katkıKonferans makalesibilirkişi

2 Atıf (Scopus)

Özet

The process of identifying change in remote sensing images has been a focal point of research for decades now. Many classical algorithms exist, and many new modern ones are still being developed. These algorithms can be divided into supervised and unsupervised. In this work an unsupervised method is presented. This method relies on the scene alignment algorithm SIFT flow. It is shown that building upon simple principles an accurate change map can be obtained from the SIFT descriptor flow of the two input images. Furthermore, it is shown that this method despite its simplicity exceeds other unsupervised methods and comes close to supervised ones, even exceeding them in some metrics. Lastly, the advantages of SIFT flow in comparison to the supervised methods are highlighted alongside its own downsides.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)47-52
Sayfa sayısı6
DergiInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Hacim46
Basın numarasıM-2-2022
DOI'lar
Yayın durumuYayınlandı - 25 Tem 2022
Harici olarak yayınlandıEvet
Etkinlik2022 Annual Conference, ASPRS 2022 - Denver, United States
Süre: 21 Mar 202225 Mar 2022

Bibliyografik not

Publisher Copyright:
© 2022 B. Awad.

Parmak izi

UNSUPERVISED CHANGE DETECTION in OPTICAL SATELLITE IMAGERY USING SIFT FLOW' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap