Tuning Accuracy-Diversity Trade-off in Neural Network Ensemble via Novel Entropy Loss Function

Muhammad Ammar Ali, Yusuf Sahin, Sureyya Özögür-Akyüz, Gozde Ünal, Buse Cisil Otar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Ensemble methods are used in machine learning by combining several models which produce an optimal predictive model. Neural network ensemble learning is a technique, which uses multiple individual deep neural networks (DNNs). Ensemble pruning methods are used to reduce the computational complexity of ensemble models. In this study, a novel optimization model is proposed to increase error independence in classifiers via entropy measurement and thus better prune the ensemble. An ensemble of 300 DNNs is trained and tested on the CIFAR-10 dataset and results show an increase in accuracy while main-taining a level of relative entropy measured by Kullback-Leibler divergence (KL-divergence).

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2021 13th International Conference on Electrical and Electronics Engineering, ELECO 2021
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar365-368
Sayfa sayısı4
ISBN (Elektronik)9786050114379
DOI'lar
Yayın durumuYayınlandı - 2021
Etkinlik13th International Conference on Electrical and Electronics Engineering, ELECO 2021 - Virtual, Bursa, Turkey
Süre: 25 Kas 202127 Kas 2021

Yayın serisi

Adı2021 13th International Conference on Electrical and Electronics Engineering, ELECO 2021

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???13th International Conference on Electrical and Electronics Engineering, ELECO 2021
Ülke/BölgeTurkey
ŞehirVirtual, Bursa
Periyot25/11/2127/11/21

Bibliyografik not

Publisher Copyright:
© 2021 Chamber of Turkish Electrical Engineers.

Finansman

ACKNOWLEDGMENT This study is supported by The Scientific and Technological Research Council Of Turkey (TUBITAK) Project No: 119E100.

FinansörlerFinansör numarası
TUBITAK119E100
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

    Parmak izi

    Tuning Accuracy-Diversity Trade-off in Neural Network Ensemble via Novel Entropy Loss Function' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap