Tumor detection by using Zernike moments on segmented magnetic resonance brain images

Zafer Iscan*, Zümray Dokur, Tamer Ölmez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

81 Atıf (Scopus)

Özet

In this study, a novel method is proposed for the detection of tumor in magnetic resonance (MR) brain images. The performance of the novel method is investigated on one phantom and 20 original MR brain images with tumor and 50 normal (healthy) MR brain images. Before the segmentation process, 2D continuous wavelet transform (CWT) is applied to reveal the characteristics of tissues in MR head images. Then, each MR image is segmented into seven classes (six head tissues and the background) by using the incremental supervised neural network (ISNN) and the wavelet-bands. After the segmentation process, the head is extracted from the background by simply discarding the background pixels. Symmetry axis of the head in the MR image is determined by using moment properties. Asymmetry is analyzed by using the Zernike moments of each of six tissues segmented in the head: two vectors are individually formed for the left and right hand sides of the symmetry axis on the sagittal plane by using the Zernike moments of the segmented tissues in the head. Presence of asymmetry and the tumors are inquired by considering the distance between these two vectors. The performance of the proposed method is further investigated by moving the location of the tumor and by modifying its size in the phantom image. It is observed that tumor detection is successfully realized for the tumorous 20 MR brain images.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)2540-2549
Sayfa sayısı10
DergiExpert Systems with Applications
Hacim37
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - 15 Mar 2010

Parmak izi

Tumor detection by using Zernike moments on segmented magnetic resonance brain images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap