Time series classification via topological data analysis

Alperen Karan*, Atabey Kaygun

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

23 Atıf (Scopus)

Özet

In this paper, we develop topological data analysis methods for classification tasks on univariate time series. As an application, we perform binary and ternary classification tasks on two public datasets that consist of physiological signals collected under stress and non-stress conditions. We accomplish our goal by using persistent homology to engineer stable topological features after we use a time delay embedding of the signals and perform a subwindowing instead of using windows of fixed length. The combination of methods we use can be applied to any univariate time series and allows us to reduce noise and use long window sizes without incurring an extra computational cost. We then use machine learning models on the features we algorithmically engineered to obtain higher accuracies with fewer features.

Orijinal dilİngilizce
Makale numarası115326
DergiExpert Systems with Applications
Hacim183
DOI'lar
Yayın durumuYayınlandı - 30 Kas 2021

Bibliyografik not

Publisher Copyright:
© 2021 Elsevier Ltd

Parmak izi

Time series classification via topological data analysis' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap