Thermal to visible face recognition using deep autoencoders

Alperen Kantarci, Hazim Kemal Ekenel

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

18 Atıf (Scopus)

Özet

Visible face recognition systems achieve nearly perfect recognition accuracies using deep learning. However, in lack of light, these systems perform poorly. A way to deal with this problem is thermal to visible cross-domain face matching. This is a desired technology because of its usefulness in night time surveillance. Nevertheless, due to differences between two domains, it is a very challenging face recognition problem. In this paper, we present a deep autoencoder based system to learn the mapping between visible and thermal face images. Also, we assess the impact of alignment in thermal to visible face recognition. For this purpose, we manually annotate the facial landmarks on the Carl and EURECOM datasets. The proposed approach is extensively tested on three publicly available datasets: Carl, UND-X1, and EURECOM. Experimental results show that the proposed approach improves the state-of-the-art significantly. We observe that alignment increases the performance by around 2%. Annotated facial landmark positions in this study can be downloaded from the following link: github.com/Alpkant/Thermal-to-Visible-Face-Recognition-Using-Deep-Autoencoders.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2019 International Conference of the Biometrics Special Interest Group, BIOSIG 2019 - Proceedings
EditörlerBromme Bromme, Christoph Busch, Antitza Dantcheva, Christian Rathgeb, Andreas Uhl
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9783885796909
Yayın durumuYayınlandı - Eyl 2019
Etkinlik2019 International Conference of the Biometrics Special Interest Group, BIOSIG 2019 - Darmstadt, Germany
Süre: 18 Eyl 201920 Eyl 2019

Yayın serisi

Adı2019 International Conference of the Biometrics Special Interest Group, BIOSIG 2019 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2019 International Conference of the Biometrics Special Interest Group, BIOSIG 2019
Ülke/BölgeGermany
ŞehirDarmstadt
Periyot18/09/1920/09/19

Bibliyografik not

Publisher Copyright:
© 2019 Gesellschaft fuer Informatik.

Parmak izi

Thermal to visible face recognition using deep autoencoders' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap