The geometry of hemi-slant submanifolds of a locally product Riemannian manifold

Hakan Mete Taştan*, Fatma Özdemir

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

18 Atıf (Scopus)

Özet

In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some applications of this result. We get a necessary and suffcient condition for a proper hemi-slant submanifold to be a hemi-slant product. We also study these types of submanifolds with parallel canonical structures. Moreover, we give two characterization theorems for the totally umbilical proper hemi-slant submanifolds. Finally, we obtain a basic inequality involving Ricci curvature and the squared mean curvature of a hemi-slant submanifold of a certain type of locally product Riemannian manifolds.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)268-284
Sayfa sayısı17
DergiTurkish Journal of Mathematics
Hacim39
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - 2015

Bibliyografik not

Publisher Copyright:
© TÜBÏTAK.

Parmak izi

The geometry of hemi-slant submanifolds of a locally product Riemannian manifold' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap