TY - JOUR
T1 - The Effects of Cross-Linking Agents on the Mechanical Properties of Poly (Methyl Methacrylate) Resin
AU - Ceylan, Gulsum
AU - Emik, Serkan
AU - Yalcinyuva, Tuncer
AU - Sunbuloğlu, Emin
AU - Bozdag, Ergun
AU - Unalan, Fatma
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - Cross-linking agents are incorporated into denture base materials to improve their mechanical properties. This study investigated the effects of various cross-linking agents, with different cross-linking chain lengths and flexibilities, on the flexural strength, impact strength, and surface hardness of polymethyl methacrylate (PMMA). The cross-linking agents used were ethylene glycol dimethacrylate (EGDMA), tetraethylene glycol dimethacrylate (TEGDMA), tetraethylene glycol diacrylate (TEGDA), and polyethylene glycol dimethacrylate (PEGDMA). These agents were added to the methyl methacrylate (MMA) monomer component in concentrations of 5%, 10%, 15%, and 20% by volume and 10% by molecular weight. A total of 630 specimens, comprising 21 groups, were fabricated. Flexural strength and elastic modulus were assessed using a 3-point bending test, impact strength was measured via the Charpy type test, and surface Vickers hardness was determined. Statistical analyses were performed using the Kolmogorov–Smirnov Test, Kruskal–Wallis Test, Mann–Whitney U Test, and ANOVA with post hoc Tamhane test (p ≤ 0.05). No significant increase in flexural strength, elastic modulus, or impact strength was observed in the cross-linking groups compared to conventional PMMA. However, surface hardness values notably decreased with the addition of 5% to 20% PEGDMA. The incorporation of cross-linking agents in concentrations ranging from 5% to 15% led to an improvement in the mechanical properties of PMMA.
AB - Cross-linking agents are incorporated into denture base materials to improve their mechanical properties. This study investigated the effects of various cross-linking agents, with different cross-linking chain lengths and flexibilities, on the flexural strength, impact strength, and surface hardness of polymethyl methacrylate (PMMA). The cross-linking agents used were ethylene glycol dimethacrylate (EGDMA), tetraethylene glycol dimethacrylate (TEGDMA), tetraethylene glycol diacrylate (TEGDA), and polyethylene glycol dimethacrylate (PEGDMA). These agents were added to the methyl methacrylate (MMA) monomer component in concentrations of 5%, 10%, 15%, and 20% by volume and 10% by molecular weight. A total of 630 specimens, comprising 21 groups, were fabricated. Flexural strength and elastic modulus were assessed using a 3-point bending test, impact strength was measured via the Charpy type test, and surface Vickers hardness was determined. Statistical analyses were performed using the Kolmogorov–Smirnov Test, Kruskal–Wallis Test, Mann–Whitney U Test, and ANOVA with post hoc Tamhane test (p ≤ 0.05). No significant increase in flexural strength, elastic modulus, or impact strength was observed in the cross-linking groups compared to conventional PMMA. However, surface hardness values notably decreased with the addition of 5% to 20% PEGDMA. The incorporation of cross-linking agents in concentrations ranging from 5% to 15% led to an improvement in the mechanical properties of PMMA.
KW - cross-linking agent
KW - denture base polymers
KW - flexural strength
KW - impact strength
KW - surface hardness
UR - http://www.scopus.com/inward/record.url?scp=85160614165&partnerID=8YFLogxK
U2 - 10.3390/polym15102387
DO - 10.3390/polym15102387
M3 - Article
AN - SCOPUS:85160614165
SN - 2073-4360
VL - 15
JO - Polymers
JF - Polymers
IS - 10
M1 - 2387
ER -