The deep multichannel discrete-time cellular neural network model for classification

Emrah Abtioglu*, Mustak Erhan Yalcin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

Özet

High latency and power consumption are two major problems that need to be addressed in convolutional neural networks (CNN). In this paper, the convolutional layer is replaced with a discrete-time cellular neural network (CellNN) to overcome these problems. Multiple configurations of CellNNs are trained in a framework called TensorFlow to classify objects from the CIFAR-10 database. Effects of the number of iterations, the number of channels, batch normalization, and activation functions on the classification accuracies are presented. It is shown that TensorFlow is a tool that is capable of training discrete-time CellNNs. Although the accuracies of the proposed networks on CIFAR-10 are slightly lesser than the existing CNNs, with reduced parameters and multiply-accumulates (MACs), power consumption and computation time of our networks will be less than CNNs.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)4171-4178
Sayfa sayısı8
DergiInternational Journal of Circuit Theory and Applications
Hacim50
Basın numarası11
DOI'lar
Yayın durumuYayınlandı - Kas 2022

Bibliyografik not

Publisher Copyright:
© 2022 John Wiley & Sons Ltd.

Parmak izi

The deep multichannel discrete-time cellular neural network model for classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap