Özet
This paper introduces Sentinel-2 Biophysical Engine implemented on the Google Earth Engine (GEE) platform, addressing the critical need for high-resolution, near-real-time monitoring of Earth's surfaces in response to population growth and climate change. Leveraging Copernicus Ground-Based Observations for Validation (GBOV) data, the tool utilizes neural network models to derive essential biophysical variables such as Leaf Area Index (LAI). Integrating reflectance values, acquisition geometry parameters, and auxiliary data, the GEE implementation demonstrates accuracy through in-situ validation. Results show promising Root Mean Square Error (RMSE), Mean Absolute Error (MAE), correlation, and bias values. With applications in land surface monitoring, agriculture, and hydrological modeling, this tool has strong potential to contribute sustainable resource management and climate change mitigation. Future developments involve expanding the tool to incorporate Landsat-8 data, further enhancing its global applicability.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 5200-5203 |
Sayfa sayısı | 4 |
ISBN (Elektronik) | 9798350360325 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2024 |
Etkinlik | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece Süre: 7 Tem 2024 → 12 Tem 2024 |
Yayın serisi
Adı | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 |
---|---|
Ülke/Bölge | Greece |
Şehir | Athens |
Periyot | 7/07/24 → 12/07/24 |
Bibliyografik not
Publisher Copyright:© 2024 IEEE.