The action-angle Wigner function: A discrete, finite and algebraic phase space formalism

T. Hakioǧlu*, E. Tepedelenlioǧlu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

14 Atıf (Scopus)

Özet

The action-angle representation in quantum mechanics is conceptually quite different from its classical counterpart and motivates a canonical discretization of the phase space. In this work, a discrete and finite-dimensional phase space formalism, in which the phase space variables are discrete and the time is continuous, is developed and the fundamental properties of the discrete Weyl-Wigner-Moyal quantization are derived. The action-angle Wigner function is shown to exist in the semi-discrete limit of this quantization scheme. A comparison with other formalisms which are not explicitly based on canonical discretization is made. Fundamental properties that an action-angle phase space distribution respects are derived. The dynamical properties of the action-angle Wigner function are analysed for discrete and finite-dimensional model Hamiltonians. The limit of the discrete and finite-dimensional formalism including a discrete analogue of the Gaussian wavefunction spread, viz. the binomial wavepacket, is examined and shown by examples that standard (continuum) quantum mechanical results can be obtained as the dimension of the discrete phase space is extended to infinity.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)6357-6383
Sayfa sayısı27
DergiJournal of Physics A: Mathematical and General
Hacim33
Basın numarası36
DOI'lar
Yayın durumuYayınlandı - 15 Eyl 2000
Harici olarak yayınlandıEvet

Parmak izi

The action-angle Wigner function: A discrete, finite and algebraic phase space formalism' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap