Testing Impact Measures in Spatial Autoregressive Models

Giuseppe Arbia*, Anil K. Bera, Osman Doğan, Süleyman Taşpınar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

12 Atıf (Scopus)

Özet

Researchers often make use of linear regression models in order to assess the impact of policies on target outcomes. In a correctly specified linear regression model, the marginal impact is simply measured by the linear regression coefficient. However, when dealing with both synchronic and diachronic spatial data, the interpretation of the parameters is more complex because the effects of policies extend to the neighboring locations. Summary measures have been suggested in the literature for the cross-sectional spatial linear regression models and spatial panel data models. In this article, we compare three procedures for testing the significance of impact measures in the spatial linear regression models. These procedures include (i) the estimating equation approach, (ii) the classical delta method, and (iii) the simulation method. In a Monte Carlo study, we compare the finite sample properties of these procedures.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)40-75
Sayfa sayısı36
DergiInternational Regional Science Review
Hacim43
Basın numarası1-2
DOI'lar
Yayın durumuYayınlandı - 1 Oca 2020
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© The Author(s) 2019.

Parmak izi

Testing Impact Measures in Spatial Autoregressive Models' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap