Türkiye Elektrik Tüketimi Tahmini Için RNN Tabanli Zaman Serisi Yakląsimi

Alper Tokgoz, Gozde Unal

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

101 Atıf (Scopus)

Özet

RNN, LSTM and GRU variations have been increasing its popularity on time-series applications. Liberalization of Turkish Electricity Market empowers the necessity of better electricity consumption prediction systems. This paper presents a Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM), Gated Recurrent Units (GRU) based time series forecasting experiments on Turkish electricity load prediction. Resulting %0.71 MAPE success of our experiments yields better results than existing researches based on ARIMA and artificial neural networks on Turkish electricity load forecasting which have %2.6 and %1.8 success rate respectively.

Tercüme edilen katkı başlığıA RNN based time series approach for forecasting turkish electricity load
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar1-4
Sayfa sayısı4
ISBN (Elektronik)9781538615010
DOI'lar
Yayın durumuYayınlandı - 5 Tem 2018
Etkinlik26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 - Izmir, Turkey
Süre: 2 May 20185 May 2018

Yayın serisi

Adı26th IEEE Signal Processing and Communications Applications Conference, SIU 2018

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
Ülke/BölgeTurkey
ŞehirIzmir
Periyot2/05/185/05/18

Bibliyografik not

Publisher Copyright:
© 2018 IEEE.

Keywords

  • Electric load forecasting
  • Gru
  • Lstm
  • Rnn
  • Time series prediction
  • Turkisk electricity market

Parmak izi

Türkiye Elektrik Tüketimi Tahmini Için RNN Tabanli Zaman Serisi Yakląsimi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap