Özet
RNN, LSTM and GRU variations have been increasing its popularity on time-series applications. Liberalization of Turkish Electricity Market empowers the necessity of better electricity consumption prediction systems. This paper presents a Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM), Gated Recurrent Units (GRU) based time series forecasting experiments on Turkish electricity load prediction. Resulting %0.71 MAPE success of our experiments yields better results than existing researches based on ARIMA and artificial neural networks on Turkish electricity load forecasting which have %2.6 and %1.8 success rate respectively.
Tercüme edilen katkı başlığı | A RNN based time series approach for forecasting turkish electricity load |
---|---|
Orijinal dil | Türkçe |
Ana bilgisayar yayını başlığı | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 1-4 |
Sayfa sayısı | 4 |
ISBN (Elektronik) | 9781538615010 |
DOI'lar | |
Yayın durumu | Yayınlandı - 5 Tem 2018 |
Etkinlik | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 - Izmir, Turkey Süre: 2 May 2018 → 5 May 2018 |
Yayın serisi
Adı | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 |
---|---|
Ülke/Bölge | Turkey |
Şehir | Izmir |
Periyot | 2/05/18 → 5/05/18 |
Bibliyografik not
Publisher Copyright:© 2018 IEEE.
Keywords
- Electric load forecasting
- Gru
- Lstm
- Rnn
- Time series prediction
- Turkisk electricity market