Synthesizing Point Cloud Data Set for Historical Dome Systems

Mustafa Cem Güneş*, Alican Mertan, Yusuf H. Sahin, Gozde Unal, Mine Özkar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

This paper offers a workflow for generating synthetic point cloud data sets to be used in deep learning algorithms in tasks of modeling historical architectural elements. Documentation of cultural heritage is a time-consuming process that requires high precision. Computational and semi-automatic tools enhance conventional methods to shorten the duration of the documentation phase and increase the accuracy of the output. Photogrammetry and laser scanning are how geometrical data is acquired and delivered as a point cloud with position, color, and optionally normal vector information. Segmenting architectural elements based on our interpretations of this data is possible using deep neural networks but is limited when, despite the millions of points from one building, the data is insufficient in terms of variance and quantity. To overcome this limitation, we propose a semi-automatic synthetic data set generation using parametric definitions of historic architectural elements. We create a synthetic dataset, namely the Historical Dome Dataset (HDD), consisting of nearly 1000 dome systems with four semantic classes. We quantitatively and qualitatively analyze the usefulness of the HDD by training a number of modern neural networks on it. Our method of synthesizing point clouds can quickly be adapted into similar cultural heritage projects to prepare relevant data to accurately train deep neural networks and process the collected cultural heritage data.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıComputer-Aided Architectural Design. Design Imperatives
Ana bilgisayar yayını alt yazısıThe Future is Now - 19th International Conference, CAAD Futures 2021, Selected Papers
EditörlerDavid Gerber, Evangelos Pantazis, Biayna Bogosian, Alicia Nahmad, Constantinos Miltiadis
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar538-554
Sayfa sayısı17
ISBN (Basılı)9789811912795
DOI'lar
Yayın durumuYayınlandı - 2022
Etkinlik19th International Conference on Computer-Aided Architectural Design Futures, CAAD Futures 2021 - Virtual, Online
Süre: 16 Tem 202118 Tem 2021

Yayın serisi

AdıCommunications in Computer and Information Science
Hacim1465 CCIS
ISSN (Basılı)1865-0929
ISSN (Elektronik)1865-0937

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???19th International Conference on Computer-Aided Architectural Design Futures, CAAD Futures 2021
ŞehirVirtual, Online
Periyot16/07/2118/07/21

Bibliyografik not

Publisher Copyright:
© 2022, Springer Nature Singapore Pte Ltd.

Finansman

Acknowledgements. This work is supported by TÜB˙TAK (The Scientific and Technological Research Council of Turkey) Project Number: 119K896. A very special thanks to Demircan Tas¸ and Berkay Öztürk for providing photogrammetric data. Lastly, we would like to thank our research group for their valuable discussions.

FinansörlerFinansör numarası
TÜB˙TAK
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu119K896

    Parmak izi

    Synthesizing Point Cloud Data Set for Historical Dome Systems' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap