TY - JOUR
T1 - Synthesis, characterization and metal ion sensing properties of novel pyridone derivatives phthalocyanines
AU - Mlzrak, Büsra
AU - Aǧar, Meltem
AU - Altindal, Ahmet
AU - Abdurrahmanoǧlu, Saziye
N1 - Publisher Copyright:
© 2016 World Scientific Publishing Company.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - The design of novel substituted phthalocyanines closely follows the requirement of their planned applications. In this study, synthesize of novel pyridone derivatives metal-free and symmetrical cobalt(II) phthalocyanines was carried out to improve brightness. For this purpose; starting with 4-nitrophthalonitrile and 4-hydroxy-6-methyl-3-nitro-2-pyridone, 4-(6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy)phthalonitrile was prepared. Then 2(3),9(10),16(17),23(24)-tetrakis[6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy] metal-free phthalocyaninato and 2(3),9(10), 16(17),23(24)-tetrakis[6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy] phthalocyaninato Co(II) were synthesized by using 4-(6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy)phthalonitrile, lithium metal and cobalt(II) acetate tetrahydrate in amyl alcohol, respectively. The sensing behavior of the film of derivatives metal-free and symmetrical cobalt(II) phthalocyanines for the online detection of heavy metal ions in water samples was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the analytes on the coating surface cause a reversible negative frequency shift of the resonator. Quartz crystal microbalance (QCM) functionalized with phthalocyanine, derivatives metal-free and symmetrical cobalt(II) phthalocyanines, are demonstrated to be sensors for the detection of heavy metal ions like Cd2+, Zn2+, Cu2+, Cr2+ and Co2+. Thus, QCM based sensor arrays are considered a promising platform for the direct analysis of aqueous samples.
AB - The design of novel substituted phthalocyanines closely follows the requirement of their planned applications. In this study, synthesize of novel pyridone derivatives metal-free and symmetrical cobalt(II) phthalocyanines was carried out to improve brightness. For this purpose; starting with 4-nitrophthalonitrile and 4-hydroxy-6-methyl-3-nitro-2-pyridone, 4-(6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy)phthalonitrile was prepared. Then 2(3),9(10),16(17),23(24)-tetrakis[6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy] metal-free phthalocyaninato and 2(3),9(10), 16(17),23(24)-tetrakis[6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy] phthalocyaninato Co(II) were synthesized by using 4-(6-methyl-3-nitro-2-oxo-1,2-dihydropyridin-4-yloxy)phthalonitrile, lithium metal and cobalt(II) acetate tetrahydrate in amyl alcohol, respectively. The sensing behavior of the film of derivatives metal-free and symmetrical cobalt(II) phthalocyanines for the online detection of heavy metal ions in water samples was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the analytes on the coating surface cause a reversible negative frequency shift of the resonator. Quartz crystal microbalance (QCM) functionalized with phthalocyanine, derivatives metal-free and symmetrical cobalt(II) phthalocyanines, are demonstrated to be sensors for the detection of heavy metal ions like Cd2+, Zn2+, Cu2+, Cr2+ and Co2+. Thus, QCM based sensor arrays are considered a promising platform for the direct analysis of aqueous samples.
KW - cobalt
KW - detection
KW - heavy metal
KW - metal-free
KW - phthalocyanine
KW - pyridone
KW - sensitivity
UR - http://www.scopus.com/inward/record.url?scp=85007543307&partnerID=8YFLogxK
U2 - 10.1142/S1088424616501200
DO - 10.1142/S1088424616501200
M3 - Article
AN - SCOPUS:85007543307
SN - 1088-4246
VL - 20
SP - 1457
EP - 1462
JO - Journal of Porphyrins and Phthalocyanines
JF - Journal of Porphyrins and Phthalocyanines
IS - 12
ER -