Surfaces in E3 with L1-pointwise 1-type Gauss map

Young Ho Kim, Nurettin Cenk Turgay

Araştırma sonucu: ???type-name???Makalebilirkişi

25 Atıf (Scopus)

Özet

In this paper, we study surfaces in E3 whose Gauss map G satisfies the equation □ G = f(G + C) for a smooth function f and a constant vector C, where □ stands for the Cheng-Yau operator. We focus on surfaces with constant Gaussian curvature, constant mean curvature and constant principal curvature with such a property. We obtain some classification and characterization theorems for these kinds of surfaces. Finally, we give a characterization of surfaces whose Gauss map G satisfies the equation □G = λ(G + C) for a constant λ and a constant vector C.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)935-949
Sayfa sayısı15
DergiBulletin of the Korean Mathematical Society
Hacim50
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - 2013

Parmak izi

Surfaces in E3 with L1-pointwise 1-type Gauss map' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap