Support vector regression for surveillance purposes

Sedat Ozer*, Hakan A. Cirpan, Nihat Kabaoglu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

This paper addresses the problem of applying powerful statistical pattern classification algorithm based on kernel functions to target tracking on surveillance systems. Rather than directly adapting a recognizer, we develop a localizer directly using the regression form of the Support Vector Machines (SVM). The proposed approach considers to use dynamic model together as feature vectors and makes the hyperplane and the support vectors follow the changes in these features. The performance of the tracker is demonstrated in a sensor network scenario with a constant velocity moving target on a plane for surveillance purpose.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıMultimedia Content Representation, Classification and Security - International Workshop, MRCS 2006. Proceedings
YayınlayanSpringer Verlag
Sayfalar442-449
Sayfa sayısı8
ISBN (Basılı)3540393927, 9783540393924
DOI'lar
Yayın durumuYayınlandı - 2006
Harici olarak yayınlandıEvet
EtkinlikInternational Workshop on Multimedia Content Representation, Classification and Security, MRCS 2006 - Istanbul, Turkey
Süre: 11 Eyl 200613 Eyl 2006

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim4105 LNCS
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Workshop on Multimedia Content Representation, Classification and Security, MRCS 2006
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot11/09/0613/09/06

Parmak izi

Support vector regression for surveillance purposes' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap