Stock Price Prediction: Fuzzy Clustering-Based Approach

Ahmet Tezcan Tekin, Ferhan Çebi, Tolga Kaya

Araştırma sonucu: ???type-name???Bölümbilirkişi

Özet

In this study, the last two years' hourly opening and closing prices of the banks' stocks traded on BIST-30 were used as the dataset. The research is aimed to predict the closing prices of these stocks in the light of machine learning. In this context, the authors propose a new method containing ensemble learning algorithms and fuzzy clustering technics for predicting stock prices. With this method, authors aim to find stocks which are similar characteristics with test sets and model them together. Thanks to this method, authors aim to improve modelling success. For comparing the results, authors also create models with classical machine learning methods such as support vector machines, random forest, and boosting type new generation algorithms such as extreme gradient boosting and catboost.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıEncyclopedia of Data Science and Machine Learning
YayınlayanIGI Global
Sayfalar1841-1856
Sayfa sayısı16
ISBN (Elektronik)9781799892212
ISBN (Basılı)9781799892205
DOI'lar
Yayın durumuYayınlandı - 1 Oca 2022

Bibliyografik not

Publisher Copyright:
© 2023 by IGI Global. All rights reserved.

Parmak izi

Stock Price Prediction: Fuzzy Clustering-Based Approach' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap