Stochastic Optimal Control under Non-Gaussian Uncertainties via Entropy Minimization and Dynamical Indicators

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Robust and optimal trajectory planning in the face of nonlinear dynamics and non-gaussian uncertainties poses a fundamental challenge in the field of astronautics. This research paper delves into the exploration of entropy and dynamical indicators associated with Lagrangian Coherent Structures (LCS), specifically the Finite-Time Lyapunov Exponent (FTLE) and PseudoDiffusion Exponent, for addressing optimal control problems amidst uncertainties characterized by non-Gaussian probabilities. To accomplish this, sampling-based approaches and the Perron-Frobenius transfer operator are employed to generate open-loop stochastic optimal controls. Sparse grids are utilized to generate trajectory samples and reformulate stochastic optimal control as a deterministic optimization problem across the domain of uncertainty. Subsequently, SC-EPOCS is employed to tackle the resulting optimization problem and a comparative analysis of maximum terminal altitude and covariances is conducted to assess robustness exhibited by each metric in the context of trajectory planning for a Mars entry problem, considering uncertainties in both the initial state and model parameters.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıAIAA SciTech Forum and Exposition, 2024
YayınlayanAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Basılı)9781624107115
DOI'lar
Yayın durumuYayınlandı - 2024
EtkinlikAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Süre: 8 Oca 202412 Oca 2024

Yayın serisi

AdıAIAA SciTech Forum and Exposition, 2024

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???AIAA SciTech Forum and Exposition, 2024
Ülke/BölgeUnited States
ŞehirOrlando
Periyot8/01/2412/01/24

Bibliyografik not

Publisher Copyright:
© 2024 by Akan Selim.

Parmak izi

Stochastic Optimal Control under Non-Gaussian Uncertainties via Entropy Minimization and Dynamical Indicators' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap