Stochastic maximum likelihood methods for semi-blind channel estimation

Hakan A. Cirpan*, Michail K. Tsatsanis

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

46 Atıf (Scopus)

Özet

In this letter, a blind stochastic maximum likelihood (ML) channel estimation algorithm is adapted to incorporate a known training sequence as part of the transmitted frame. A hidden Markov model (HMM) formulation of the problem is introduced, and the Baum-Welch algorithm is modified to provide a computationally efficient solution to the resulting optimization problem. The proposed method provides a unified framework for semiblind channel estimation, which exploits information from both the training and the blind part of the received data record. The performance of the ML estimator is studied, based on the evaluation of Cramer-Rao bounds (CRB's). Finally, some preliminary simulation results are presented.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)21-24
Sayfa sayısı4
DergiIEEE Signal Processing Letters
Hacim5
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - 1998
Harici olarak yayınlandıEvet

Parmak izi

Stochastic maximum likelihood methods for semi-blind channel estimation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap