Stability of periodic waves for the defocusing fractional cubic nonlinear Schrödinger equation

Handan Borluk, Gulcin M. Muslu*, Fábio Natali

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

Özet

In this paper, we determine the spectral instability of periodic odd waves for the defocusing fractional cubic nonlinear Schrödinger equation. Our approach is based on periodic perturbations that have the same period as the standing wave solution, and we construct real periodic waves by minimizing a suitable constrained problem. The odd solution generates three negative simple eigenvalues for the associated linearized operator, and we obtain all this spectral information by using tools related to the oscillation theorem for fractional Hill operators. Newton's iteration method is presented to generate the odd periodic standing wave solutions and numerical results have been used to apply the spectral stability theory via Krein signature as established in Kapitula et al. (2004) and Kapitula et al. (2005).

Orijinal dilİngilizce
Makale numarası107953
DergiCommunications in Nonlinear Science and Numerical Simulation
Hacim133
DOI'lar
Yayın durumuYayınlandı - Haz 2024

Bibliyografik not

Publisher Copyright:
© 2024 Elsevier B.V.

Parmak izi

Stability of periodic waves for the defocusing fractional cubic nonlinear Schrödinger equation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap