TY - JOUR
T1 - Spectroscopic and analytic properties of new copper(II) complex of antiviral drug valacyclovir
AU - Gölcü, Aybegül
AU - Dolaz, Mustafa
AU - Demirelli, Havva
AU - Diorak, Metin
AU - Serin, Selahattin
PY - 2006/8
Y1 - 2006/8
N2 - The complexation processes between CuII and the antiviral drug, valacyclovir hydrochloride (H2L), were studied under different reaction conditions, using UV-Vis, IR and mass spectra, magnetochemical, thermogravimetric, atomic absorption, conductivity, and elemental analysis data. Using the Job method, the compositions of these complexes were determined. Under the ligand (H2L) excess (M:L =Â 1:1-1:10). In aqueous solutions, a binuclear violet complex Cu2(HL)2L(H 2O)4 is formed, with an octahedral structure. Under comparable amounts of the reagents, in MeOH solutions, a green mononuclear complex Cu(H2L)Cl2 is formed. Protonation constants of the H2L, and stability constants of its Cu2+ complexes, were determined by potentiometric titration in H2O media at 25 ± 0.02 °C under a N2 atmosphere and ionic strength of 0.1 m NaCl. It has been observed that H2L has three protonation constants. The divalent metal ion Cu2+ forms stable 2:1 and 2:2 complexes with H2L. The antimicrobial activity studies of the valacyclovir and it's complexes have been studied against some gram positive species: (Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis) and gram negative (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Kluyveromyces fragilis, Saccharomyces cerevisiae, Candida albicans) bacteriaz.
AB - The complexation processes between CuII and the antiviral drug, valacyclovir hydrochloride (H2L), were studied under different reaction conditions, using UV-Vis, IR and mass spectra, magnetochemical, thermogravimetric, atomic absorption, conductivity, and elemental analysis data. Using the Job method, the compositions of these complexes were determined. Under the ligand (H2L) excess (M:L =Â 1:1-1:10). In aqueous solutions, a binuclear violet complex Cu2(HL)2L(H 2O)4 is formed, with an octahedral structure. Under comparable amounts of the reagents, in MeOH solutions, a green mononuclear complex Cu(H2L)Cl2 is formed. Protonation constants of the H2L, and stability constants of its Cu2+ complexes, were determined by potentiometric titration in H2O media at 25 ± 0.02 °C under a N2 atmosphere and ionic strength of 0.1 m NaCl. It has been observed that H2L has three protonation constants. The divalent metal ion Cu2+ forms stable 2:1 and 2:2 complexes with H2L. The antimicrobial activity studies of the valacyclovir and it's complexes have been studied against some gram positive species: (Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis) and gram negative (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Kluyveromyces fragilis, Saccharomyces cerevisiae, Candida albicans) bacteriaz.
UR - http://www.scopus.com/inward/record.url?scp=33745726664&partnerID=8YFLogxK
U2 - 10.1007/s11243-006-0044-y
DO - 10.1007/s11243-006-0044-y
M3 - Article
AN - SCOPUS:33745726664
SN - 0340-4285
VL - 31
SP - 658
EP - 665
JO - Transition Metal Chemistry
JF - Transition Metal Chemistry
IS - 5
ER -