Spectral analysis of large sparse matrices for scalable direct solvers

Ahmet Duran*, M. Serdar Celebi, Mehmet Tuncel, Figen Oztoprak

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

It is significant to perform structural analysis of large sparse matrices in order to obtain scalable direct solvers. In this paper, we focus on spectral analysis of large sparse matrices. We believe that the approach for exception handling of challenging matrices via Gerschgorin circles and using tuned parameters is beneficial and practical to stabilize the performance of sparse direct solvers. Nearly defective matrices are among challenging matrices for the performance of solver. Such matrices should be handled separately in order to get rid of potential performance bottleneck. Clustered eigenvalues observed via Gerschgorin circles may be used to detect nearly defective matrix. We observe that the usage of super-nodal storage parameters affects the number of fill-ins and memory usage accordingly.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıAdvances in Applied Mathematics
EditörlerAli R. Ansari
YayınlayanSpringer New York LLC
Sayfalar153-160
Sayfa sayısı8
ISBN (Elektronik)9783319069227
DOI'lar
Yayın durumuYayınlandı - 2014
EtkinlikGulf International Conference on Applied Mathematics, GICAM 2013 - Kuwait, Kuwait
Süre: 19 Kas 201321 Kas 2013

Yayın serisi

AdıSpringer Proceedings in Mathematics and Statistics
Hacim87
ISSN (Basılı)2194-1009
ISSN (Elektronik)2194-1017

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Gulf International Conference on Applied Mathematics, GICAM 2013
Ülke/BölgeKuwait
ŞehirKuwait
Periyot19/11/1321/11/13

Bibliyografik not

Publisher Copyright:
© Springer International Publishing Switzerland 2014.

Parmak izi

Spectral analysis of large sparse matrices for scalable direct solvers' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap