Speaker emotional state classification by DPM models with annealed SMC samplers

Bilge Gunsel, Ozgun Cirakman, Jarek Krajewski

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

We propose a speaker emotional state classification method that employs inference-based Bayesian networks to learn posterior density of emotional speech sequentially. We aim to alleviate difficulty in detecting medium-term states where the required monitoring time is longer compared to short-term emotional states that makes temporal content representation harder. Our inference algorithm takes advantage of the Sequential Monte Carlo (SMC) sampling and recursively approximates the Dirichlet Process Mixtures (DPM) model of the speaker state class density with unknown number of components. After learning the target posterior, classification of speaker states has been performed by a simple minimum distance classifier. Test results obtained on two different datasets demonstrate the proposed method highly reduces the training data length while providing comparable accuracy compared to the existing state-of-the-art techniques.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2015 23rd European Signal Processing Conference, EUSIPCO 2015
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar120-124
Sayfa sayısı5
ISBN (Elektronik)9780992862633
DOI'lar
Yayın durumuYayınlandı - 22 Ara 2015
Etkinlik23rd European Signal Processing Conference, EUSIPCO 2015 - Nice, France
Süre: 31 Ağu 20154 Eyl 2015

Yayın serisi

Adı2015 23rd European Signal Processing Conference, EUSIPCO 2015

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???23rd European Signal Processing Conference, EUSIPCO 2015
Ülke/BölgeFrance
ŞehirNice
Periyot31/08/154/09/15

Bibliyografik not

Publisher Copyright:
© 2015 EURASIP.

Parmak izi

Speaker emotional state classification by DPM models with annealed SMC samplers' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap