Sparsity regularised recursive least squares adaptive filtering

E. M. Eksioglu*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

54 Atıf (Scopus)

Özet

The authors propose a new approach for the adaptive identification of sparse systems. This approach improves on the recursive least squares (RLS) algorithm by adding a sparsity inducing weighted l1 norm penalty to the RLS cost function. Subgradient analysis is utilised to develop the recursive update equations for the calculation of the optimum system estimate, which minimises the regularised cost function. Two new algorithms are introduced by considering two different weighting scenarios for the l1 norm penalty. These new l1 relaxation-based RLS algorithms emphasise sparsity during the adaptive filtering process, and they allow for faster convergence than standard RLS when the system under consideration is sparse. The authors test the performance of the novel algorithms and compare it with standard RLS and other adaptive algorithms for sparse system identification.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)480-487
Sayfa sayısı8
DergiIET Signal Processing
Hacim5
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - Ağu 2011

Parmak izi

Sparsity regularised recursive least squares adaptive filtering' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap