Sparse representations for online-learning-based hyperspectral image compression

Irem Ülkü*, Behçet Ugur Töreyin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

12 Atıf (Scopus)

Özet

Sparse models provide data representations in the fewest possible number of nonzero elements. This inherent characteristic enables sparse models to be utilized for data compression purposes. Hyperspectral data is large in size. In this paper, a framework for sparsity-based hyperspectral image compression methods using online learning is proposed. There are various sparse optimization models. A comparative analysis of sparse representations in terms of their hyperspectral image compression performance is presented. For this purpose, online-learning-based hyperspectral image compression methods are proposed using four different sparse representations. Results indicate that, independent of the sparsity models, online-learning-based hyperspectral data compression schemes yield the best compression performances for data rates of 0.1 and 0.3 bits per sample, compared to other state-of-the-art hyperspectral data compression techniques, in terms of image quality measured as average peak signal-to-noise ratio.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)8625-8631
Sayfa sayısı7
DergiApplied Optics
Hacim54
Basın numarası29
DOI'lar
Yayın durumuYayınlandı - 10 Eki 2015

Bibliyografik not

Publisher Copyright:
© 2015 Optical Society of America.

Parmak izi

Sparse representations for online-learning-based hyperspectral image compression' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap