Sparse coding of hyperspectral imagery using online learning

İrem Ülkü*, Behçet Uğur Töreyin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

10 Atıf (Scopus)

Özet

Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate–distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)959-966
Sayfa sayısı8
DergiSignal, Image and Video Processing
Hacim9
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - May 2015
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2015, Springer-Verlag London.

Finansman

This work is supported in part by the Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant with agreement number 114E200. Authors are grateful to Mustafa Teke for his assistance in obtaining RX detection results. An earlier version of this study was presented in part at the IEEE International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) 2014 [].

FinansörlerFinansör numarası
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu114E200

    Parmak izi

    Sparse coding of hyperspectral imagery using online learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap