Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection

Fatma Küçük*, Behcet Uur Töreyin, Fatih Vehbi Çelebi

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

9 Atıf (Scopus)

Özet

A sparse and low-rank matrix decomposition-based method is proposed for anomaly detection in hyperspectral data. High-dimensional data are decomposed into low-rank and sparse matrices representing background and anomalies, respectively. The problem of the decomposition process is defined from the dictionary learning point of view. Therefore, our way of obtaining these matrices differs from previous studies. It aims to find a correct partition of the data and separate anomaly pixels from the background. After decomposition, Mahalanobis distance is applied to the sparse part of the data to get anomaly locations. Three hyperspectral data sets are used for evaluation. Experimental results suggest that anomaly detection performance of the proposed method surpasses those of the state-of-the-art methods.

Orijinal dilİngilizce
Makale numarası014519
DergiJournal of Applied Remote Sensing
Hacim13
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - 1 Oca 2019

Bibliyografik not

Publisher Copyright:
© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).

Parmak izi

Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap