TY - JOUR
T1 - Space shift keying for multi-hop multi-branch networks
AU - Yarkin, Ferhat
AU - Altunbas, Ibrahim
AU - Basar, Ertugrul
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/4
Y1 - 2018/4
N2 - In this paper, we propose two different multi-hop multiple-input multiple-output (MIMO) space shift keying (SSK) schemes and investigate their error performance. In the first scheme, we consider a multi-hop multi-branch SSK system, in which the source and destination are equipped with multiple transmit and receive antennas, respectively. In this scheme, SSK is applied by using the source transmit antennas. Moreover, in each branch, single-antenna relays are used to amplify the transmitted signal from the source and forward it to the next relay until it reaches to the destination. In the second scheme, we consider a multi-hop MIMO-SSK system with path selection. In this scheme, the best path is selected among multiple branches and a multiple-antenna source communicates with a multiple-antenna destination via the relays of the selected path. Each relay is equipped with multiple transmit and receive antennas. Moreover, the source and all relays employ SSK modulation to transmit information bits and each relay in each path follows the decode-and-forward protocol. Approximate theoretical error probability expressions are derived for both schemes. Furthermore, an asymptotic symbol error probability performance analysis is also performed for the multi-hop MIMO-SSK system with path selection. It is shown that the proposed multi-hop SSK systems outperform conventional multi-hop M-PSK systems in terms of the error performance for especially high data rates and sufficient number of receive antennas at the receiving nodes.
AB - In this paper, we propose two different multi-hop multiple-input multiple-output (MIMO) space shift keying (SSK) schemes and investigate their error performance. In the first scheme, we consider a multi-hop multi-branch SSK system, in which the source and destination are equipped with multiple transmit and receive antennas, respectively. In this scheme, SSK is applied by using the source transmit antennas. Moreover, in each branch, single-antenna relays are used to amplify the transmitted signal from the source and forward it to the next relay until it reaches to the destination. In the second scheme, we consider a multi-hop MIMO-SSK system with path selection. In this scheme, the best path is selected among multiple branches and a multiple-antenna source communicates with a multiple-antenna destination via the relays of the selected path. Each relay is equipped with multiple transmit and receive antennas. Moreover, the source and all relays employ SSK modulation to transmit information bits and each relay in each path follows the decode-and-forward protocol. Approximate theoretical error probability expressions are derived for both schemes. Furthermore, an asymptotic symbol error probability performance analysis is also performed for the multi-hop MIMO-SSK system with path selection. It is shown that the proposed multi-hop SSK systems outperform conventional multi-hop M-PSK systems in terms of the error performance for especially high data rates and sufficient number of receive antennas at the receiving nodes.
KW - Amplify-and-forward
KW - Cooperative networks
KW - Decode-and-forward
KW - Index modulation
KW - Multi-hop relaying
KW - Space shift keying
UR - http://www.scopus.com/inward/record.url?scp=85042330452&partnerID=8YFLogxK
U2 - 10.1016/j.phycom.2018.02.009
DO - 10.1016/j.phycom.2018.02.009
M3 - Article
AN - SCOPUS:85042330452
SN - 1874-4907
VL - 27
SP - 161
EP - 169
JO - Physical Communication
JF - Physical Communication
ER -