Some Korovkin type approximation applications of power series methods

Havva Uluçay, Mehmet Ünver*, Dilek Söylemez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

3 Atıf (Scopus)

Özet

Korovkin type approximation via summability methods is one of the recent interests of the mathematical analysis. In this paper, we prove some Korovkin type approximation theorems in Lq[ a, b] , the space of all measurable real valued qth power Lebesgue integrable functions defined on [a, b] for q≥ 1 , and C[a, b], the space of all continuous real valued functions defined on [a, b], via statistical convergence with respect to power series (summability) methods, integral summability methods and μ-statistical convergence of the power series transforms of positive linear operators. We also show with examples that the results obtained in the present paper are stronger than some existing approximation theorems in the literature.

Orijinal dilİngilizce
Makale numarası24
DergiRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Hacim117
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - Oca 2023

Bibliyografik not

Publisher Copyright:
© 2022, The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid.

Parmak izi

Some Korovkin type approximation applications of power series methods' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap