Some difference algorithms for nonlinear klein-gordon equations

Asuman Zeytinoglu, Murat Sari*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

In this study, sixth and eighth-order finite difference schemes combined with a third-order strong stability preserving Runge-Kutta (SSP-RK3) method are employed to cope with the nonlinear Klein-Gordon equation, which is one of the important mathematical models in quantum mechanics, without any linearization or transformation. Various numerical experiments are examined to verify the applicability and efficiency of the proposed schemes. The results indicate that the corresponding schemes are seen to be reliable and effectively applicable. Another salient feature of these algorithms is that they achieve high-order accuracy with relatively less number of grid points. Therefore, these schemes are realized to be a good option in dealing with similar processes represented by partial differential equations.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıNumerical Methods and Applications - 9th International Conference, NMA 2018, Revised Selected Papers
EditörlerGeno Nikolov, Natalia Kolkovska, Krassimir Georgiev
YayınlayanSpringer Verlag
Sayfalar491-498
Sayfa sayısı8
ISBN (Basılı)9783030106911
DOI'lar
Yayın durumuYayınlandı - 2019
Harici olarak yayınlandıEvet
Etkinlik9th International conference on Numerical Methods and Applications, NMA 2018 - Borovets, Bulgaria
Süre: 20 Ağu 201824 Ağu 2018

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim11189 LNCS
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???9th International conference on Numerical Methods and Applications, NMA 2018
Ülke/BölgeBulgaria
ŞehirBorovets
Periyot20/08/1824/08/18

Bibliyografik not

Publisher Copyright:
© Springer Nature Switzerland AG 2019.

Parmak izi

Some difference algorithms for nonlinear klein-gordon equations' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap