Simple Implementation of Terrain Classification Models via Fully Convolutional Neural Networks

Assiya Sarinova*, Leila Rzayeva, Noyan Tendikov, Ibraheem Shayea

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

This paper introduces a simple implementation of three versions (large, medium, and small) of terrain multi-classification models using Fully Convolutional Neural Networks (FCNNs) for imagery data. The proposed methodology involves labeled and unlabeled data collection from European Space Agency (ESA) WorldCover and Sentinel-2 MultiSpectral Instrument (MSI) on the Google Earth Engine, compressing datasets into Tensorflow records format with 9 diverse terrain types, and handling Google Cloud training computations. There were prepared different dataset portions of 10 megabytes, 200 megabytes, and around a gigabyte files. The experimental results demonstrate the effectiveness of the CNN-based approach, achieving a tolerable 71% accuracy of the Terrain Classification Model (TCM) and robust classification performance. The simplicity and efficiency of the proposed method make it suitable for real-world applications requiring reliable and fast terrain classification.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023
EditörlerKhalil Ibrahimi, Mohamed El Kamili, Abdellatif Kobbane, Ibraheem Shayea
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350329674
DOI'lar
Yayın durumuYayınlandı - 2023
Etkinlik10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023 - Istanbul, Turkey
Süre: 26 Eki 202328 Eki 2023

Yayın serisi

AdıProceedings - 10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???10th International Conference on Wireless Networks and Mobile Communications, WINCOM 2023
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot26/10/2328/10/23

Bibliyografik not

Publisher Copyright:
© 2023 IEEE.

Parmak izi

Simple Implementation of Terrain Classification Models via Fully Convolutional Neural Networks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap