Short-time Fourier transform: Two fundamental properties and an optimal implementation

Lötfiye Durak, Orhan Arikan

Araştırma sonucu: Dergiye katkıMakalebilirkişi

264 Atıf (Scopus)

Özet

Shift and rotation invariance properties of linear time-frequency representations are investigated. It is shown that among all linear time-frequency representations, only the short-time Fourier transform (STFT) family with the Hermite-Gaussian kernels satisfies both the shift invariance and rotation invariance properties that are satisfied by the Wigner distribution (WD). By extending the time-bandwidth product (TBP) concept to fractional Fourier domains, a generalized time-bandwidth product (GTBP) is defined. For mono-component signals, it is shown that GTBP provides a rotation independent measure of compactness. Similar to the TBP optimal STFT, the GTBP optimal STFT that causes the least amount of increase in the GTBP of the signal is obtained. Finally, a linear canonical decomposition of the obtained GTBP optimal STFT analysis is presented to identify its relation to the rotationally invariant STFT.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1231-1242
Sayfa sayısı12
DergiIEEE Transactions on Signal Processing
Hacim51
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - May 2003
Harici olarak yayınlandıEvet

Parmak izi

Short-time Fourier transform: Two fundamental properties and an optimal implementation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap