Short Term Load Forecasting Using Machine Learning Algorithms: A Case Study in Turkey

Mikail Purlu, Cenk Andic, Belgin Emre Turkay, Ali Ghadiriasl Nobari

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

3 Atıf (Scopus)

Özet

In this study, short-term load forecasting of the Gebze region in Turkey was carried out using Machine Learning-based prediction algorithms such as Artificial Neural Networks, Decision Tree, Support Vector Regression and K-Nearest Neighbor. Load demand and weather variables such as temperature, humidity, pressure and wind speed are used as input variables in the forecast models. Error metrics such as Mean Absolute Error, Mean Squared Error, Mean Absolute Percentage Error and R-squared were used to control the prediction success of the proposed algorithms and models. As a result, the predictions made with all the proposed algorithms are within reliable and acceptable ranges, and Support Vector Regression algorithm showed the best performance with an error of 1.1%.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIEEE Global Energy Conference, GEC 2022
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar13-18
Sayfa sayısı6
ISBN (Elektronik)9781665497510
DOI'lar
Yayın durumuYayınlandı - 2022
Harici olarak yayınlandıEvet
Etkinlik2022 IEEE Global Energy Conference, GEC 2022 - Batman, Turkey
Süre: 26 Eki 202229 Eki 2022

Yayın serisi

AdıIEEE Global Energy Conference, GEC 2022

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IEEE Global Energy Conference, GEC 2022
Ülke/BölgeTurkey
ŞehirBatman
Periyot26/10/2229/10/22

Bibliyografik not

Publisher Copyright:
© 2022 IEEE.

Parmak izi

Short Term Load Forecasting Using Machine Learning Algorithms: A Case Study in Turkey' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap