Separate multinode ascending derivatives expansion (Demiralp's SMADE): Basis polynomials

Burcu Tunga*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

Separate Multinode Ascending Derivatives Expansion (SMADE) is a recently developed function representation method based on "Separate Node Ascending Derivatives Expansion (SNADE)" which was proposed by Prof. Demiralp. For this reason we call this method in this work "Demiralp's SMADE". The basic difference between two methods is that SNADE uses one separate node for each derivative to construct the expansion while SMADE uses multinodes for the same entities even though the separate nature of the nodes is not mandatory. This study focuses on SMADE both to present all important details of the method including its formulation and its basis polynomials.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıInternational Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015
EditörlerZacharoula Kalogiratou, Theodore E. Simos, Theodore Monovasilis, Theodore E. Simos, Theodore E. Simos
YayınlayanAmerican Institute of Physics Inc.
ISBN (Elektronik)9780735413498
DOI'lar
Yayın durumuYayınlandı - 31 Ara 2015
EtkinlikInternational Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015 - Athens, Greece
Süre: 20 Mar 201523 Mar 2015

Yayın serisi

AdıAIP Conference Proceedings
Hacim1702
ISSN (Basılı)0094-243X
ISSN (Elektronik)1551-7616

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015
Ülke/BölgeGreece
ŞehirAthens
Periyot20/03/1523/03/15

Bibliyografik not

Publisher Copyright:
© 2015 AIP Publishing LLC.

Parmak izi

Separate multinode ascending derivatives expansion (Demiralp's SMADE): Basis polynomials' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap