Semi-implicit split-step numerical methods for a class of nonlinear stochastic differential equations with non-Lipschitz drift terms

Burhaneddin İzgi, Coşkun Çetin*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

11 Atıf (Scopus)

Özet

In this paper, we discuss numerical solutions of a class of nonlinear stochastic differential equations using semi-implicit split-step methods. Under some monotonicity conditions on the drift term, we study moment estimates and strong convergence properties of the numerical solutions, with a focus on stochastic Ginzburg–Landau equations. Moreover, we compare the performance of various numerical methods, including the tamed Euler, truncated Euler, implicit Euler and split-step procedures. In particular, we discuss the empirical rate of convergence and the computational cost of these methods for certain parameter values of the models used.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)62-79
Sayfa sayısı18
DergiJournal of Computational and Applied Mathematics
Hacim343
DOI'lar
Yayın durumuYayınlandı - 1 Ara 2018

Bibliyografik not

Publisher Copyright:
© 2018 Elsevier B.V.

Parmak izi

Semi-implicit split-step numerical methods for a class of nonlinear stochastic differential equations with non-Lipschitz drift terms' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap