Segmentation of ultrasound images by using an incremental self-organized map

M. N. Kurnaz*, Z. Dokur, T. Ölmez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıKonferans makalesibilirkişi

8 Atıf (Scopus)

Özet

This paper presents a new segmentation method for ultrasound images. A new incremental self-organized map is proposed for the segmentation of the ultrasound images. Elements of the feature vectors are formed by the fast Fourier transform (FFT) of image intensities in 4×4 square blocks. In this study, two neural networks for segmentation are comparatively examined: Kohonen map, and incremental self-organized map (ISOM). It is observed that ISOM gives the best classification performance with less number of nodes after a short training time.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)2638-2640
Sayfa sayısı3
DergiAnnual Reports of the Research Reactor Institute, Kyoto University
Hacim3
Yayın durumuYayınlandı - 2001
Etkinlik23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Istanbul, Turkey
Süre: 25 Eki 200128 Eki 2001

Parmak izi

Segmentation of ultrasound images by using an incremental self-organized map' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap