Segmentation of ultrasound images by using a hybrid neural network

Zümray Dokur*, Tamer Ölmez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

51 Atıf (Scopus)

Özet

A hybrid neural network is presented for the segmentation of ultrasound images. Feature vectors are formed by the discrete cosine transform of pixel intensities in region of interest (ROI). The elements and the dimension of the feature vectors are determined by considering only two parameters: The amount of ignored coefficients, and the dimension of the ROI. First-layer-nodes of the proposed hybrid network represent hypersphers (HSs) in the feature space. Feature space is partitioned by intersecting these HSs to represent the distribution of classes. The locations and radii of the HSs are found by the genetic algorithms. Restricted Coulomb energy (RCE) network, modified RCE network, multi-layer perceptron and the proposed hybrid neural network are examined comparatively for the segmentation of ultrasound images.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1825-1836
Sayfa sayısı12
DergiPattern Recognition Letters
Hacim23
Basın numarası14
DOI'lar
Yayın durumuYayınlandı - Ara 2002

Parmak izi

Segmentation of ultrasound images by using a hybrid neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap