Segmentation of remote-sensing images by incremental neural network

Mehmet Nadir Kurnaz, Zümray Dokur*, Tamer Ölmez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

29 Atıf (Scopus)

Özet

In this study, a novel incremental neural network (INeN) is proposed for the segmentation of remote-sensing images. The data set consists of seven images acquired by the Landsat-5 TM sensor. Two feature extraction methods are comparatively examined for the segmentation of the remote-sensing images. In the first method, features are formed by the intensity of one pixel of each channel. In the second method, intensities at one neighborhood of the pixel are used to form the feature vectors. In this study, the INeN and the Kohonen network are employed for the segmentation of the remote-sensing images. The INeN is proposed to determine the number of classes automatically.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1096-1104
Sayfa sayısı9
DergiPattern Recognition Letters
Hacim26
Basın numarası8
DOI'lar
Yayın durumuYayınlandı - Haz 2005

Parmak izi

Segmentation of remote-sensing images by incremental neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap