Segmentation of MR and CT images using a hybrid neural network trained by genetic algorithms

Zümray Dokur*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

6 Atıf (Scopus)

Özet

A novel hybrid neural network trained by the genetic algorithms is presented. Genetic algorithms are used to improve the neural net's classification performance while minimizing the number of nodes. Each node of the network forms a closed region in the input space. The closed regions, which are formed by the nodes, intersect each other. The performance of the proposed hybrid neural network is compared with the multilayer perceptron, and the restricted Coulomb energy network for the segmentation of MR and CT head images. Experimental results show that the proposed neural network gives the best classification performance with a small number of nodes in short training times.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)211-225
Sayfa sayısı15
DergiNeural Processing Letters
Hacim16
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - Ara 2002

Parmak izi

Segmentation of MR and CT images using a hybrid neural network trained by genetic algorithms' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap